Chebyshev operational matrix method for solving multi-order fractional ordinary differential equations
نویسندگان
چکیده
منابع مشابه
Study on multi-order fractional differential equations via operational matrix of hybrid basis functions
In this paper we apply hybrid functions of general block-pulse functions and Legendre polynomials for solving linear and nonlinear multi-order fractional differential equations (FDEs). Our approach is based on incorporating operational matrices of FDEs with hybrid functions that reduces the FDEs problems to the solution of algebraic systems. Error estimate that verifies a converge...
متن کاملUsing operational matrix for numerical solution of fractional differential equations
In this article, we have discussed a new application of modification of hat functions on nonlinear multi-order fractional differential equations. The operational matrix of fractional integration is derived and used to transform the main equation to a system of algebraic equations. The method provides the solution in the form of a rapidly convergent series. Furthermore, error analysis of the pro...
متن کاملOperational Matrix Method for Solving Variable Order Fractional Integro-differential Equations
In this paper, operational matrix method based upon the Bernstein polynomials is proposed to solve the variable order fractional integro-differential equations in the Caputo derivative sense. We derive the Bernstein polynomials operational matrix of fractional order integration and introduce the product operational matrix of Bernstein polynomials. A truncated the Bernstein polynomials series to...
متن کاملSolving multi-order fractional differential equations by reproducing kernel Hilbert space method
In this paper we propose a relatively new semi-analytical technique to approximate the solution of nonlinear multi-order fractional differential equations (FDEs). We present some results concerning to the uniqueness of solution of nonlinear multi-order FDEs and discuss the existence of solution for nonlinear multi-order FDEs in reproducing kernel Hilbert space (RKHS). We further give an error a...
متن کاملstudy on multi-order fractional differential equations via operational matrix of hybrid basis functions
in this paper we apply hybrid functions of general block-pulse functions and legendre polynomials for solving linear and nonlinear multi-order fractional differential equations (fdes). our approach is based on incorporating operational matrices of fdes with hybrid functions that reduces the fdes problems to the solution of algebraic systems. error estimate that verifies a converge...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematical Modelling
سال: 2013
ISSN: 0307-904X
DOI: 10.1016/j.apm.2013.04.019